Data-driven wavelet-Fisz methodology for nonparametric function estimation

نویسنده

  • Piotr Fryzlewicz
چکیده

We propose a wavelet-based technique for the nonparametric estimation of functions contaminated with noise whose mean and variance are linked via a possibly unknown variance function. Our method, termed the data-driven wavelet-Fisz technique, consists of estimating the variance function via a Nadaraya-Watson estimator, and then performing a wavelet thresholding procedure which uses the estimated variance function and local means of the data to set the thresholds at a suitable level. We demonstrate the mean-square near-optimality of our wavelet estimator over the usual range of Besov classes. To achieve this, we establish an exponential inequality for the Nadaraya-Watson variance function estimator. We discuss various implementation issues concerning our wavelet estimator, and demonstrate its good practical performance. We also show how it leads to a new wavelet-domain data-driven variancestabilising transform. Our estimator can be applied to a variety of problems, including the estimation of volatilities, spectral densities and Poisson intensities, as well as to a range of problems in which the distribution of the noise is unknown.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haar-Fisz estimation of evolutionary wavelet spec- tra

We propose a new “Haar-Fisz” technique for estimating the time-varying, piecewise constant local variance of a locally stationary Gaussian time series. We apply our technique to the estimation of the spectral structure in the Locally Stationary Wavelet model. Our method combines Haar wavelets and the variance stabilizing Fisz transform. The resulting estimator is mean-square consistent, rapidly...

متن کامل

Technical Report 04:06 Smoothing the wavelet periodogram using the Haar- Fisz transform

The wavelet periodogram is hard to smooth because of the low signal-to-noise ratio and non-stationary covariance structure. This article introduces a method for smoothing a local wavelet periodogram by applying a Haar-Fisz transform which approximately Gaussianizes and approximately stabilizes the variance of the periodogram. Consequently, smoothing the transformed periodogram can take advantag...

متن کامل

Variance stabilization with DDHFm

The DDHFm package is designed to perform data-driven Haar-Fisz (DDHF) variance stabilization. The basic DDHF method itself is described in [4, 5]. The modifications to DDHF to make it work successfully for microarray (or indeed similar kinds of replicate data) are described in [10]. The basic idea of the Haar-Fisz transform is very simple. First, a Haar wavelet transform is applied to the data....

متن کامل

Technical Report: A wavelet-Fisz approach to spectrum estimation

We suggest a new approach to wavelet threshold estimation of spectral densities of stationary time series. It is well known that choosing appropriate thresholds to smooth the periodogram is difficult because non-parametric spectral estimation suffers from problems similar to curve estimation with a highly heteroscedastic and non-Gaussian error structure. Possible solutions that have been propos...

متن کامل

A Haar-Fisz Algorithm for Poisson Intensity Estimation

This article introduces a new method for the estimation of the intensity of an inhomogeneous one-dimensional Poisson process. The Haar-Fisz transformation transforms a vector of binned Poisson counts to approximate normality with variance one. Hence we can use any suitable Gaussian wavelet shrinkage method to estimate the Poisson intensity. Since the Haar-Fisz operator does not commute with the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007